Language and Computers

Writers' Aids

L245
(Based on Dickinson, Brew, \& Meurers (2013))
Indiana University
Spring 2016

Introduction
Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction
Symtax and Computing
Grammar correction rules
Caveat emptor

Spelling \& grammar correction

We are all familiar with spelling \& grammar correctors

- They are used to improve document quality
- They are not typically used to provide feedback

Typically designed for native speakers of a language

- Next unit (Language Tutoring Systems): feedback for non-native speakers

Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Syntax and Computing

Why people care about spelling

- Misspellings can cause misunderstandings
- Standard spelling makes it easy to organize words \& text:
- e.g., Without standard spelling, how would you look up things in a lexicon or thesaurus?
- e.g., Optical character recognition software (OCR) can use knowledge about standard spelling to recognize scanned words even for hardly legible input
- Standard spelling makes it possible to provide a single

Non-word error
detection
Dititionaries
N-gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods

Error correction for
web queries

Grammar correction
Syntax and Computing

Grammar correction rul

Use of writers＇aids

How are spell checkers（and grammar checkers）used？
－Interactive spelling checker：spell checker detects errors as you type
－It may or may not make suggestions for correction
－It needs a＂real－time＂response（i．e．，must be fast）
－It is up to the human to decide if the spell checker is right or wrong，and so we may not require 100\％ accuracy（especially with a list of choices）
－Automatic spelling corrector：spell checker runs on a whole document，finds errors，and corrects them
－A more difficult task
－A human may or may not proofread the results later

Outline

Tasks are typically divided into:

- Error detection = simply find the misspelled words
- Error correction = correct the misspelled words
- e.g., ater is a misspelled word, but what is the correct word? water? later? after?

We will consider three types of techniques:

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Syntax and Computing Grammar correction rules

- Grammar correction (Context-dependent word error detection \& correction)

Non-word error detection

- Word recognition: split up "words" into true words and non-words
- Non-word error detection: detect the non-words
- How is non-word error detection done?
- Using a dictionary (construction and lookup)
- n-gram analysis (more for OCR error detection)

N -gram analysis

Isolated-word error correction

Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for
web queries
Grammar correction
Syntax and Computing

Dictionaries

Intuition:

- Have a complete list of words and check the input words against this list.
- If it's not in the dictionary, it's not a word.

Two aspects:

- Dictionary construction: build the dictionary (what do you put in it?)
- Dictionary lookup: look up a potential word in the dictionary (how do you do this quickly?)

Introduction

Non-word error
detection
Dictionaries

Isolated-word error

Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Symax and Computing Grammar correction rules

Dictionary construction

One set of issues: who is the dictionary for?

- Domain-specificity: only contain words relevant to the user
- Dialectal consistency: only include forms for one variety of a language (e.g., American color or British colour)

Another set of issues: how do we analyze words?

- Tokenization: What is a word?
- Inflection: How are some words related?
- Productivity of language: How many words are there?

Addressing these issues determines how to build dictionary

Challenges for spelling correction

Tokenization

Tokenization splits a sentence into its component words
Intuitively, a "word" is simply whatever is between two spaces, but this is not always so clear.

- Contractions: two words combined into one
- e.g., can't, he's, John's [car] (vs. his car)
- Multi-word expressions: single term with space(s)
- e.g., New York, in spite of, déjà vu
- Hyphens (ambiguous if a hyphen ends a line)
- Some are always a single word: e-mail, co-operate
- Others are two words combined into one: Columbus-based, sound-change
- Abbreviations: may stand for multiple words
- e.g., etc. = et cetera, ATM = Automated Teller Machine

Challenges for spelling correction

Inflection

- A word in English may appear in various guises due to word inflections = word endings which are fairly systematic for a given part of speech
- Plural noun ending: the boy $+s \rightarrow$ the boys
- Past tense verb ending: walk + ed \rightarrow walked
- Challenges for spell checking:
- Exceptions to the rules: *mans, *runned
- Words which look like they have a given ending, but

Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Syntax and Computing Grammar correction rules they don't: Hans, deed

Challenges for spelling correction

Productivity

Productivity means that language allows for new words

- Words entering and exiting the lexicon, e.g.:
- thou, or spleet 'split' (Hamlet III.2.10) moving out
- New words all the time: jeggings, drumble, retweet, ...
- Part of speech change: nouns \leftrightarrow verbs
- retweeting can be formed off the noun retweet
- Morphological productivity: addition of prefixes \& suffixes
- e.g., I can speak of un-email-able for someone who you can't reach by email.

Dictionaries

Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods

Error correction for web queries

Grammar correction Syntax and Computing

N -gram analysis

Idea: use typical phonotactic patterns to identify words

- An n-gram here is a string of n letters.

a	1-gram (unigram)
at	2-gram (bigram)
ate	3 -gram (trigram)
late	4-gram
\vdots	\vdots

detection
Namans
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction

- We can use this n-gram information to define what the possible strings in a language are.
- e.g., po is a possible English string, whereas kvt is not.

This is more useful to correct optical character recognition (OCR) output, but we'll still take a look.

Bigram array

- Bigram array: bigram information stored in a table
- An example, for the letters k, I, m, with examples in parentheses

	\ldots	k	l	m	\ldots
\vdots					
k		0	1 (tackle)	1 (Hackman)	
l		1 (elk)	1 (hello)	1 (alms)	
m		0	1 (hamlet)	1 (hammer)	

Introduction
Non-word error detection

N -gram analysis
Isolated-word error correction

Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistio methods

Error correction for web queries

Grammar correction Syntax and Computing

- The first letter of the bigram is given by the vertical letters (i.e., down the side), the second by the horizontal
- This is a non-positional bigram array: the array 1 s and 0s apply for a string found anywhere within a word (beginning, 4th character, ending, etc.).

Positional bigram array

- To store information specific to the beginning, the end, or some other position in a word, use a positional bigram array: the array only applies for a given position in a word.
- Here's the same array as before, but now only applied to word endings:

	\ldots	k	l	m	\ldots
\vdots					
k		0	0	0	
l		1 (elk)	1 (hall)	1 (elm)	
m		0	0	0	
\vdots					

Introduction

Non-word error detection

Dictionantes
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Symtax and Computing

Isolated-word error correction

- Having discussed how errors can be detected, we want to know how to correct these misspelled words:
- Isolated-word error correction: correcting words without taking context into account
- This technique can only handle errors resulting in non-words
- Knowledge about what is a typical error helps in finding correct word
- What leads to errors? What properties do errors have?

N -gram analysis
Isolated-word error correction

Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods:
Error correction for web queries

Grammar correction Syntax and Computing Grammar correction rules

Caveat emptor

Types of errors

Keyboard effects

Introduction

Keyboard proximity

- e.g., program might become progrsm since a and s are next to each other on a QWERTY keyboard

Space bar issues

- Run-on errors: two separate words become one
- e.g., the fuzz becomes thefuzz
- Split errors: one word becomes two separate items
- e.g., equalization becomes equali zation
- The resulting items might still be words: e.g., a tollway becomes atoll way

Types of errors

Phonetic errors

Phonetic errors

Errors stemming from imperfect sound-letter correspondences

Dictionaries
N-gram analysis
Isolated-word error
correction
Types of errors

Similarity key techniques
Minimum edit distance
Probabilistic methods

Error correction for
web queries

Grammar correction Suntax and Computing

Grammar correction rules
Caveat emptor

- e.g., seperate (for separate), bisket (for biscuit)

Types of errors

Knowledge-based errors

- Not knowing a word:
- e.g., boocoo (for beaucoup),
- Not knowing a rule:
- e.g., consonant (non-)doubling: labeled vs. labelled, hoped vs. hopped
- Knowing something is odd about the spelling, but guessing the wrong thing
- e.g., siscors (for scissors)

N -gram analysis
Isolated-word error
correction
Types of errors

Similarity key techniques
Minimum edit distance
Probabilistic methods

Error correction for web queries

Grammar correction
Syntax and Computing
Grammar correction rules
Caveat emptor

Describing typical errors

Errors can be examined under a more mechanistic lens:
Types of operations

- insertion = a letter is added to a word
- deletion = a letter is deleted from a word
- substitution = a letter is put in place of another one
- transposition = two adjacent letters are switched

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors

Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Syntax and Computing Grammar correction rules

Note that the first two alter the length of the word, whereas the second two maintain the same length.

Typical error properties

- Word length effects: most misspellings are within two characters in length of original
- When searching for the correct spelling, we do not usually need to look at words with greater length differences
- First-position error effects: the first letter of a word is rarely erroneous
- When searching for the correct spelling, the process is sped up by being able to look only at words with the same first letter

Isolated-word error correction methods

- Many different methods are used; we will briefly look at four methods:
- Rule-based methods
- Similarity key techniques
- Probabilistic methods
- Minimum edit distance
- The methods play a role in one of the three basic steps:

1. Detection of an error (discussed above)
2. Generation of candidate corrections

- rule-based methods
- similarity key techniques

3. Ranking of candidate corrections

- probabilistic methods
- minimum edit distance (also usable for generation)

Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Syntax and Computing

Rule-based methods

Introduction

One can generate correct spellings by writing rules:

- Common misspelling rewritten as correct word:
- e.g., hte \rightarrow the
- Rules
- based on inflections:
- e.g., VCing \rightarrow VCCing, where

$$
\begin{aligned}
\mathrm{V}= & \text { letter representing vowel, } \\
& \text { basically the regular expression [aeiou] }
\end{aligned}
$$

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods

Error correction for web queries
$C=$ letter representing consonant, basically [bcdfghjklmnpqrstvwxyz]

Grammar correction Syntax and Computing

- based on other common spelling errors (such as keyboard effects or common transpositions):
- e.g., CsC $\rightarrow \mathrm{CaC}$
- e.g., cie \rightarrow cei

Similarity key techniques（SOUNDEX）

－Problem：How can we find a list of possible corrections？
－Solution：Store words in different boxes in a way that puts the similar words together．
－Example：
1．Start by storing words by their first letter（first letter effect），
－e．g．，punc starts with the code P ．
2．Then assign numbers to each letter
－e．g．， 0 for vowels， 1 for b, p, f, v（all bilabials），and so forth，e．g．，punc \rightarrow P052
3．Then throw out all zeros and repeated letters，

Introduction
Non－word error
detection
Dictionaries
N －gram analysis
Isolated－word error
correction
Types of errors
Rule－based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods：
Error correction for web queries

Grammar correction Syntax and Computing Grammar correction rules
－e．g．，P052 \rightarrow P52．
4．Look for real words within the same box，
－e．g．，punk is also in the P52 box．
http：／／en．wikipedia．org／wiki／Soundex

Minimum edit distance

- In order to rank possible spelling corrections, it can be useful to calculate the minimum edit distance = minimum number of operations it would take to convert one word into another.
- For example, we can take the following five steps to

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods

Minimum edit distance convert junk to haiku:

1. junk \rightarrow juk (deletion)
2. juk \rightarrow huk (substitution)
3. huk \rightarrow hku (transposition)
4. hku \rightarrow hiku (insertion)
5. hiku \rightarrow haiku (insertion)

- But is this the minimal number of steps needed?

Computing edit distances

Figuring out the upper bound

- To be able to compute the edit distance of two words at all, we need to ensure there is a finite number of steps.
- This can be accomplished by
- requiring that letters cannot be changed back and forth a potentially infinite number of times, i.e., we
- limit the number of changes to the size of the material we are presented with, the two words.
- Idea: Never deal with a character in either word more than once.
- Result:
- We could delete each character in the first word and then insert each character of the second word.
- Thus, we will never have a distance greater than length(word1) + length(word2)

Computing edit distances

Using a graph to map out the options

- To calculate minimum edit distance, we set up a directed, acyclic graph, a set of nodes (circles) and arcs (arrows).
- Horizontal arcs correspond to deletions, vertical arcs correspond to insertions, and diagonal arcs correspond to substitutions (a letter can be "substituted" for itself).

Error correction for web queries

Grammar correction Syntax and Computing Grammar correction rules

Computing edit distances

An example graph

- Say, the user types in fyre.
- We want to calculate how far away fry is (one of the possible corrections). In other words, we want to calculate the minimum edit distance (or minimum edit cost) from fyre to fry.
- As the first step, we draw the following directed graph:

Computing edit distances

Adding numbers to the example graph

- The graph is acyclic = for any given node, it is impossible to return to that node by following the arcs.
- We can add identifiers to the states, which allows us to define a topological order
- Topological order: not every pair of nodes has an ordering

Error correction for web queries

Grammar correction Symax and Computing

Computing edit distances

Adding costs to the arcs of the example graph
－We need to add the costs involved to the arcs．
－In the simplest case，the cost of deletion，insertion，and substitution is 1 each（and substitution with the same character is free）．

correction
Types of errors
Rule－based methods

Minimum edit distance

Error correction for web queries

Grammar correction Symax and Computing Grammar correction rule Caveat emptor
－Instead of assuming the same cost for all operations，in reality one will use different costs，e．g．，for the first character or based on the confusion probability．

Computing edit distances

How to compute the path with the least cost

We want to find the path from the start (A) to the end (T) with the least cost.

- The simple but dumb way of doing it:
- Follow every path from start (A) to finish (T) and see how many changes we have to make.
- But this is very inefficient! There are many different paths to check.

Isolated-word error correction
Types of errors
Rule-based methods
Similarity key technique
Minimum edit distance

Error correction for web queries

Grammar correction Symax and Computing

Computing edit distances

The smart way to compute the least cost

- The smart way to compute the least cost uses dynamic programming: process designed to make use of results computed earlier
- We follow the topological ordering \& calculate the least cost for each node:
- We add the cost of an arc to the cost of reaching the node this arc originates from.
- We take the minimum of the costs calculated for all arcs

Error correction for web queries

Grammar correction Svatax and Computing Grammar correction rule

- The key point is that we are storing partial results along the way, instead of recalculating everything, every time we compute a new path.

Probabilistic methods

When converting from one word to another, a lot of words will be the same distance.
e.g., for the misspelling wil, all of the following are one edit distance away:

- will
- wild
- wilt
- nil

Introduction

Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edili distance
Probabilistic methods
Error correction for

Probabilities will help to tell them apart

The Noisy Channel Model

Probabilities can be modeled with the noisy channel model

correction
Types of errors
Rule-based methods
Similarity key techniques

Probabilistic methods
Error correction for web queries

Goal: Recover X from Y

- The noisy channel model has been very popular in speech recognition, among other fields
(Thanks to Mike White for the slides on the Noisy Channel Model)

Noisy Channel Spelling Correction

Goal: Recover correct spelling X from misspelling Y

- Noisy word: $Y=$ observation (incorrect spelling)
- We want to find the word (X) which maximizes: $P(X \mid Y)$, i.e., the probability of X, given that Y has been seen

Example

Goal: Recover correct spelling donald from misspelling donadl (i.e., P(donald|donadl))

Conditional probability

(Reminder)

Dictionaries

N -gram analysis

$p(x \mid y)$ is the probability of x given y

- Let's say that yogurt appears 20 times in a text of 10,000 words
- $p($ yogurt $)=20 / 10,000=0.002$
- Now, let's say frozen appears 50 times in the text, and yogurt appears 10 times after it
- $p($ yogurt \mid frozen $)=10 / 50=0.20$

Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques

Probabilistic methods

Error correction for
web queries

Grammar correction
Syntax and Computing
Grammar correction rules

Bayes Rule

Introduction

Dictionaries

N -gram analysis

Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques

Probabilistic methods

Error correction for web queries

Grammar correction Syntax and Computing Grammar correction rules

The Noisy Channel and Bayes Rule

We can directly relate Bayes Rule to the Noisy Channel:

Goal: for a given y, find $x=$
$\arg \max _{x} \overbrace{\operatorname{Pr}(y \mid x)}^{\text {Noisy Channel }} \overbrace{\operatorname{Pr}(x)}^{\text {Prior }}$

The denominator is ignored because it's the same for all possible corrections, i.e., the observed word (y) doesn't change

Finding the Correct Spelling

Goal: for a given misspelling y, find correct spelling $x=$
$\arg \max _{x} \overbrace{\operatorname{Pr}(y \mid x)}^{\text {Error Model }} \quad \overbrace{\operatorname{Pr}(x)}^{\text {Language Model }}$

1. List "all" possible candidate corrections, i.e., all words with one insertion, deletion, substitution, or transposition
2. Rank them by their probabilities

Example: calculate for donald

$$
\operatorname{Pr}(\text { donadl|donald }) \operatorname{Pr}(\text { donald })
$$

and see if this value is higher than for any other possible correction.

Obtaining probabilities

How do we get these probabilities?
We can count up the number of occurrences of X to get $P(X)$, but where do we get $P(Y \mid X)$?

- We can use confusion matrices: one matrix each for insertion, deletion, substituion, and transposition

detection

Dictionaries

N -gram analysis

Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques

Obtaining probabilities

Confusion probabilities

- It is impossible to fully investigate all possible error causes and how they interact, but we can learn from watching how often people make errors and where.
- One way is to build a confusion matrix = a table indicating how often one letter is mistyped for another

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error correction

Types of errors
Rule-based methods
Similarity key techniques

Probabilistic methods

Error correction for web queries

Grammar correction Syntax and Computing Grammar correction rules
(cf. Kernighan et al 1999)

Obtaining probabilities

Using a spelling error-annotated corpus:

- These matrices are calculated by counting how often, e.g., ab was typed instead of a in the case of insertion

To get $P(Y \mid X)$, then, we find the probability of this kind of typo in this context. For insertion, for example (X_{p} is the $p^{t h}$ character of X):
(2) $P(Y \mid X)=\frac{i n s\left[X_{p-1}, Y_{p}\right]}{\operatorname{count}\left[X_{p-1}\right]}$

Some resources ...

Introduction

Want to try these some of these things for yourself?

- How to Write a Spelling Corrector by Peter Norvig: http://norvig.com/spell-correct.html
- 21 lines of Python code (other programming languages also available)
- Birkbeck spelling error corpus: http://www.ota.ox.ac.uk/headers/0643.xml

Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Probabilistic methods
Error correction for web queries

Grammar correction Syntax and Computing

Spelling correction for web queries

A nice little side topic ...

Spelling correction for web queries is hard because it must handle:

- Proper names, new terms, etc. (blog, shrek, nsync)
- Frequent and severe spelling errors
- Very short contexts

correction

Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Symax and Computing

Algorithm

Main Idea (Cucerzan and Brill (EMNLP-04))

- Iteratively transform the query into more likely queries
- Use query logs to determine likelihood
- Despite the fact that many of these are misspelled!
- Assumptions: the less wrong a misspelling is, the more frequent it is; and correct > incorrect

Example:

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edil distance
Probabilistic methods
Error correction for
web queries
Grammar correction
Syntax and Computing
Grammar correction rules
Caveat emptor

Algorithm (2)

- Compute the set of all close alternatives for each word in the query
- Look at word unigrams and bigrams from the logs; this handles concatenation and splitting of words
- Use weighted edit distance to determine closeness
- Search sequence of alternatives for best alternative string, using a noisy channel model

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edil distance
Probabilistio methods
Error correction for
web queries
Grammar correction

Constraint:

- No two adjacent in-vocabulary words can change simultaneously

The formal algorithm

(just for fun)

Introduction

Given a string s_{0}, find a sequence $s_{1}, s_{2}, \ldots, s_{n}$ such that:

- $s_{n}=s_{n-1}$ (stopping criterion)
- $\forall i \in 0 \ldots n-1$,
- $\operatorname{dist}\left(s_{i}, s_{i+1}\right) \leq \delta$ (only a minimal change)
- $P\left(s_{i+1} \mid s_{i}\right)=\max _{t} P\left(t \mid s_{i}\right)$ (the best change)

correction

Types of errors
Rule-based methods
Similarity key techniques
Minimum edil distance
Probabilistio methods
Error correction for web queries

Grammar correction
Symax and Computing
Grammar correction rules
Caveat emptor

Examples

Context Sensitivity

- power crd \rightarrow power cord
- video crd \rightarrow video card
- platnuin rings \rightarrow platinum rings

Known Words

- golf war \rightarrow gulf war
- sap opera \rightarrow soap opera

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction Symax and Computing

Examples (2)

Tokenization

- chat inspanich \rightarrow chat in spanish
- ditroitigers \rightarrow detroit tigers
- britenetspear inconcert \rightarrow britney spears in concert

Constraints

- log wood \rightarrow log wood (not dog food)

N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistio methods
Error correction for web queries

Grammar correction Symax and Computing Grammar correction rules

Context-dependent word correction

Context-dependent word correction = correcting words based on the surrounding context.

- This will handle errors which are real words, just not the right one or not in the right form.
- This is very similar to a grammar checker = a mechanism which tells a user if their grammar is wrong.

Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for
web queries
Grammar correction

Grammar correction-what does it correct?

- Syntactic errors = errors in how words are put together in a sentence: the order or form of words is incorrect, i.e., ungrammatical.
- Local syntactic errors: 1-2 words away
- e.g., The study was conducted mainly be John Black.
- A verb is where a preposition should be.
- Long-distance syntactic errors: (roughly) 3 or more words away
- e.g., The kids who are most upset by the little totem is going home early.
- Agreement error between subject kids and verb is

Introduction
Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edilt distance
Probabilistic methods
Error correction for
web queries
Grammar correction

More on grammar correction

- Semantic errors = errors where the sentence structure sounds okay, but it doesn't really mean anything.
- e.g., They are leaving in about fifteen minuets to go to her house.
\Rightarrow minuets and minutes are both plural nouns, but only one makes sense here

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for
web queries
There are many different ways in which grammar correctors work, two of which we'll focus on:

- N-gram model
- Rule-based model

N -gram grammar correctors

Remember that bigrams \& trigrams model the probability of sequences

- Question n-grams address: Given the previous word (or two words), what is the probability of the current word?
- Use of n-grams: compare different candidates:
- e.g., given these, we have a lower chance of seeing report than of seeing reports
- Since a confusable word (reports) can be put in the same context, resulting in a higher probability, we flag report as a potential error

Error correction for
web queries

But there's a major problem: we may hardly ever see these reports, so we won't know its probability.

- Some possible solutions:
- use bigrams/trigrams of parts of speech
- use massive amounts of data and only flag errors when you have enough data to back it up

Rule-based grammar correctors

Introduction

Non-word error detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edil distance
Probabilistic methods
Error correction for
web queries
Grammar correction
2. Change the occurrence of extend in the pattern to extent.

See, e.g., http://www.languagetool.org/

Beyond regular expressions

Introduction
Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistio methods
Error correction for web queries

Grammar correction
Syntax and Computing

- We need to look at how the sentence is constructed in order to build a better rule.

Syntax

- Syntax = the study of the way that sentences are constructed from smaller units.
- There cannot be a "dictionary" for sentences since there is an infinite number of possible sentences:
(3) The house is large.
(4) John believes that the house is large.
(5) Mary says that John believes that the house is large.

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods

There are two basic principles of sentence organization:

- Linear order
- Hierarchical structure (Constituency)

Linear order

－Linear order＝the order of words in a sentence．
－A sentence can have different meanings，based on its linear order：
（6）John loves Mary．
（7）Mary loves John．
－Languages vary as to what extent this is true，but linear order in general is used as a guiding principle for organizing words into meaningful sentences．
－Simple linear order as such is not sufficient to determine sentence organization，though．
－e．g．，we can＇t simply say＂The verb is the second word in the sentence．＂
（8）I eat at really fancy restaurants．
（9）Many executives eat at really fancy restaurants．

Introduction
Non－word error
detection
Dictionaries
N －gram analysis
Isolated－word error
correction
Types of errors
Rule－based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods

Error correction for
web queries
Grammar correction
Syntax and Computing

Constituency

- What are the "meaningful units" of a sentence like Most of the ducks play extremely fun games?
- Most of the ducks

Introduction

Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistio methods
Error correction for
web queries
Grammar correction
Syntax and Computing

- We refer to these meaningful groupings as constituents of a sentence.

Hierarchical structure

- Constituents can appear within other constituents
- Constituents shown through brackets:
[[Most [of [the ducks]]] [play [[extremely fun] games]]]
- Constituents displayed as a syntactic tree:

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edil distance
Probabilistio methods
Error correction for web queries

Grammar correction
Syntax and Computing

Categories

- We would also like some way to say that
- the ducks, and
- extremely fun games
are the same type of grouping, or constituent, whereas
- of the ducks
seems to be something else.
- For this, we will talk about different categories

Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for

- Lexical
- Phrasal

Lexical categories

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error

Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for
web queries
Grammar correction
Syntax and Computing

- determiners/articles: a, an, the, this, these, some, much, ...

Determining lexical categories

How do we determine which category a word belongs to?

- Distribution: Where can these kinds of words appear in a sentence?
- e.g., Nouns like mouse can appear after articles ("determiners") like some, while a verb like eat cannot.
- Morphology: What kinds of word prefixes/suffixes can a word take?
- e.g., Verbs like walk can take a ed ending to mark them as past tense. A noun like mouse cannot.
(We'll discuss this more with Language Tutoring Systems)

Phrasal categories

What about phrasal categories?

- What other phrases can we put in place of The joggers in a sentence such as the following?
- The joggers ran through the park.
- Some options:
- Susan
- students
- you
- most dogs
- some children

Introduction
Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for
web queries
Grammar correction
Syntax and Computing

- a huge, lovable bear
- my friends from Brazil
- the people that we interviewed
- Since all of these contain nouns, we consider these to be noun phrases, abbreviated with NP.

Building a tree

Other phrases work similarly ($\mathrm{S}=$ sentence, VP = verb phrase, $\mathrm{PP}=$ prepositional phrase, $\mathrm{AdjP}=$ adjective phrase):

Introduction
Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for
web queries
Grammar correction
Syntax and Computing

Phrase Structure Rules

- We can give rules for building these phrases. That is, we want a way to say that a determiner and a noun make up a noun phrase, but a verb and an adverb do not.
- Phrase structure rules are a way to build larger constituents from smaller ones.
- e.g., S \rightarrow NP VP

This says:
Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edil distance
Probabilistic methods
Error correction for

- A sentence (S) constituent is composed of a noun phrase (NP) constituent and a verb phrase (VP) constituent. [hierarchy]
- The NP must precede the VP. [linear order]

Some other possible English rules

- NP \rightarrow Det N (the cat, a house, this computer)
- NP \rightarrow Det AdjP N (the happy cat, a really happy house)
- For phrase structure rules, as shorthand parentheses are used to express that a category is optional.
- We thus can compactly express the two rules above as one rule: NP \rightarrow Det (AdjP) N
- AdjP \rightarrow (Adv) Adj (really happy)
- VP \rightarrow V (laugh, run, eat)
- VP \rightarrow V NP (love John, hit the wall, eat cake)
- VP \rightarrow V NP NP (give John the ball)
- PP $\rightarrow \mathrm{P} \mathrm{NP} \mathrm{(to} \mathrm{the} \mathrm{store} ,\mathrm{at} \mathrm{John} ,\mathrm{in} \mathrm{a} \mathrm{New} \mathrm{York} \mathrm{minute)}$
- NP \rightarrow NP PP (the cat on the stairs)

Introduction
Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods

Error correction for web queries

Grammar correction
Syntax and Computing

Phrase Structure Rules and Trees

With every phrase structure rule, you can draw a tree for it.

Lexicon:

Vt \rightarrow saw
Det \rightarrow the
Det \rightarrow a
$\mathrm{N} \rightarrow$ dragon
$\mathrm{N} \rightarrow$ boy
Adj \rightarrow young

Syntactic rules:
$S \rightarrow N P V P$
VP \rightarrow Vt NP
$N P \rightarrow \operatorname{Det} N$
$N \rightarrow$ Adj N

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction
Syntax and Computing

Some Properties of Phrase Structure Rules

- Potentially (structurally) ambiguous = have more than one analysis
(10) We need more intelligent leaders.
(11) Paraphrases:
a. We need leaders who are more intelligent.
b. Intelligent leaders? We need more of them!
- Recursive = property allowing for a rule to be reapplied (within its hierarchical structure).
e.g., NP \rightarrow NP PP
$\mathrm{PP} \rightarrow \mathrm{P}$ NP
- The property of recursion means that the set of potential sentences in a language is infinite.

Parsing

Introduction

Non-word error detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods the bottom and working up to the top.

Trace of a top-down parse

Introduction

Non-word error

detection
Dictionaries
N -gram analysis
Isolated-word error correction

Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabinstic methoos

Error correction for
web queries

Grammar correction
Syntax and Computing

Trace of a bottom-up parse

Introduction

Non-word error

detection
Dictionaries
N -gram analysis
Isolated-word error correction

Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods

Error correction for
web queries
Grammar correction
Syntax and Computing

More finely articulated rules

In practice, one actually works with rules like:

- $\mathrm{S} \rightarrow \mathrm{NP}_{p l} \mathrm{VP}_{p l}$

Or uses features \& variables like:

- $\mathrm{S} \rightarrow \mathrm{NP}_{\text {NUM }}=x \mathrm{VP}_{\text {NUM }}=x$

It can get very complicated (\& fun) very quickly:

- $\mathrm{S}_{\text {TENSE }}=Z \rightarrow \mathrm{NP}_{\text {NUM }}=X$, PER $=Y ~ \mathrm{VP}_{\text {NUM }}=X, P E R=Y$, TENSE $=Z$

N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for

Writing grammar correction rules

So, with our rules, we can now write some correction rules, which we will just sketch here.

- A baseball teams were successful.
- A followed by PLURAL NP: change $A \rightarrow$ The
- i.e., one looks for a tree like: NP $\rightarrow \operatorname{Det}_{s g} \mathrm{NP}_{p l}$
- We'll talk about this more with mal-rules in Language Tutoring Systems
- John at the pizza.
- The structure of this sentence is NP PP, but that doesn't make up a whole sentence.
- We need a verb somewhere.

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods:
Error correction for
web queries
Grammar correction

Grammar correction rules

Dangers of spelling and grammar correction

- The more we depend on spelling correctors, do we try less to correct things on our own?
- But spell checkers are not 100\%
- One (older) study found that students made more errors (in proofreading) when using a spell checker!

	high SAT scores	low SAT scores
use checker	16 errors	17 errors
no checker	5 errors	12.3 errors

(cf., http://www.wired.com/news/business/0,1367,58058,00.html)

Introduction

Non-word error
detection
Dictionaries
N -gram analysis
Isolated-word error
correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for web queries

Grammar correction
Symax and Computing
Grammar correction rules

Candidate for a Pullet Surprise

("The Spell-Checker Poem")

Introduction

Non-word error
by Mark Eckman and Jerrold H. Zar
http://grammar.about.com/od/spelling/a/spellcheck.htm
I have a spelling checker,
It came with my PC.
It plane lee marks four my revue
Miss steaks aye can knot sea.
Eye ran this poem threw it, Your sure reel glad two no.

Dictionaries
N -gram analysis
Isolated-word error correction
Types of errors
Rule-based methods
Similarity key techniques
Minimum edit distance
Probabilistic methods
Error correction for
web queries
Grammar correction Its vary polished in it's weigh.
My checker tolled me sew.

References

- The discussion is based on Markus Dickinson (2006). Writer's Aids. In Keith Brown (ed.): Encyclopedia of Language and Linguistics. Second Edition.. Elsevier.
- A major inspiration for that article and our discussion is Karen Kukich (1992): Techniques for Automatically Correcting Words in Text. ACM Computing Surveys, pages 377-439; as well as Roger Mitton (1996), English Spelling and the Computer.
- For a discussion of the confusion matrix, cf. Mark D. Kernighan, Kenneth W. Church and William A. Gale (1990). A spelling Correction Program Based on a Noisy Channel Model. In Proceedings of COLING-90. pp. 205-210.
- An open-source style/grammar checker is described in Daniel Naber (2003). A Rule-Based Style and Grammar Checker. Diploma Thesis, Universität Bielefeld. https://www.languagetool.org

