Language and Computers
Writers’ Aids

L245
(Based on Dickinson, Brew, & Meurers (2013))
Indiana University

Spring 2016

Spelling & grammar correction

We are all familiar with spelling & grammar correctors
» They are used to improve document quality
» They are not typically used to provide feedback

Typically designed for native speakers of a language

» Next unit (Language Tutoring Systems): feedback for
non-native speakers

Introduction

Why people care about spelling

Introduction

» Misspellings can cause misunderstandings

» Standard spelling makes it easy to organize words & e
teXt: ord error
» e.g., Without standard spelling, how would you look up
things in a lexicon or thesaurus?
» e.g., Optical character recognition software (OCR) can
use knowledge about standard spelling to recognize
scanned words even for hardly legible input

» Standard spelling makes it possible to provide a single
text, accessible to a wide range of readers (different
backgrounds, speaking different dialects, etc.)

Caveat emptor

» Using standard spelling can make a good impression in
social interaction

Use of writers’ aids

Introduction

How are spell checkers (and grammar checkers) used?

» Interactive spelling checker: spell checker detects
errors as you type
» It may or may not make suggestions for correction
» It needs a “real-time” response (i.e., must be fast)
» Itis up to the human to decide if the spell checker is
right or wrong, and so we may not require 100%
accuracy (especially with a list of choices)

» Automatic spelling corrector: spell checker runs on a ‘ -
whole document, finds errors, and corrects them Caveat emptor

» A more difficult task
» A human may or may not proofread the results later

Outline

Introduction

Tasks are typically divided into:
» Error detection = simply find the misspelled words
» Error correction = correct the misspelled words

» e.g., ateris a misspelled word, but what is the correct
word? water? later? after?

We will consider three types of techniques:
» Non-word error detection
» |solated-word error detection & correction

» Grammar correction (Context-dependent word error
detection & correction)

Non-word error detection

Introduction
Non-word error
detection
» Word recognition: split up “words” into true words and
non-words

» Non-word error detection: detect the non-words
» How is non-word error detection done?

» Using a dictionary (construction and lookup)
» n-gram analysis (more for OCR error detection)

Dictionaries

Intuition:
» Have a complete list of words and check the input

words against this list.

» If it's not in the dictionary, it's not a word.
Two aspects:

» Dictionary construction: build the dictionary (what do
you put in it?)

» Dictionary lookup: look up a potential word in the
dictionary (how do you do this quickly?)

Dictionary construction

Introduction

One set of issues: who is the dictionary for?

» Domain-specificity: only contain words relevant to the
user

» Dialectal consistency: only include forms for one
variety of a language (e.g., American color or British
colour)

Another set of issues: how do we analyze words?
» Tokenization: What is a word? ‘ i
» Inflection: How are some words related? Caveat emptor
» Productivity of language: How many words are there?

Addressing these issues determines how to build dictionary

Challenges for spelling correction

Tokenization

Introduction

Tokenization splits a sentence into its component words

Intuitively, a “word” is simply whatever is between two
spaces, but this is not always so clear.

» Contractions: two words combined into one
» e.g., can’t, he’s, John’s [car] (vs. his car)

» Multi-word expressions: single term with space(s)
» e.g., New York, in spite of, déja vu

» Hyphens (ambiguous if a hyphen ends a line)

» Some are always a single word: e-mail, co-operate et lbioy
» Others are two words combined into one:
Columbus-based, sound-change

» Abbreviations: may stand for multiple words

» e.g., etc. = et cetera, ATM = Automated Teller Machine

Challenges for spelling correction
Inflection

Introduction

» A word in English may appear in various guises due to

word inflections = word endings which are fairly
systematic for a given part of speech

» Plural noun ending: the boy + s — the boys
» Past tense verb ending: walk + ed — walked
» Challenges for spell checking:

» Exceptions to the rules: *mans, *runned

» Words which look like they have a given ending, but
they don’t: Hans, deed

Challenges for spelling correction
Productivity

Productivity means that language allows for new words
» Words entering and exiting the lexicon, e.g.:

» thou, or spleet split’ (Hamlet I11.2.10) moving out
» New words all the time: jeggings, drumble, retweet, ...

» Part of speech change: nouns < verbs

» retweeting can be formed off the noun retweet

» Morphological productivity: addition of prefixes &
suffixes

» e.g., | can speak of un-email-able for someone who you
can’t reach by email.

N-gram analysis

Idea: use typical phonotactic patterns to identify words
» An n-gram here is a string of n letters.

a 1-gram (unigram)
at 2-gram (bigram)
ate 3-gram (trigram)
late 4-gram

» We can use this n-gram information to define what the
possible strings in a language are.

» e.g., pois a possible English string, whereas kvt is not.

This is more useful to correct optical character recognition
(OCR) output, but we'll still take a look.

Bigram array

» Bigram array: bigram information stored in a table
» An example, for the letters k, I, m, with examples in

parentheses
k | m
k 0 1 (tackle) 1 (Hackman)
I 1 (elk) 1 (hello) 1 (alms)
m 0 1 (hamlet) 1 (hammer)

» The first letter of the bigram is given by the vertical
letters (i.e., down the side), the second by the horizontal

Caveat emptor

» This is a non-positional bigram array: the array 1s
and Os apply for a string found anywhere within a word
(beginning, 4th character, ending, etc.).

Positional bigram array

» To store information specific to the beginning, the end,
or some other position in a word, use a positional
bigram array: the array only applies for a given position
in a word.

» Here’s the same array as before, but now only applied
to word endings:

k | m
k 0 0 0
[1(elk) 1 (hall) 1 (elm)
m 0 0 0

u]

o)
|

ul
it

Isolated-word error correction

Introduction

» Having discussed how errors can be detected, we want
. Isolated-word error
to know how to correct these misspelled words: correation
» Isolated-word error correction: correcting words s e
without taking context into account
» This technique can only handle errors resulting in
non-words
» Knowledge about what is a typical error helps in finding
correct word
» What leads to errors? What properties do errors have?

Types of errors
Keyboard effects

Keyboard proximity

» e.g., program might become progrsm since a and s are
next to each other on a QWERTY keyboard

Space bar issues

» Run-on errors: two separate words become one
> e.g., the fuzz becomes thefuzz
» Split errors: one word becomes two separate items

> e.g., equalization becomes equali zation
» The resulting items might still be words: e.g., a tollway
becomes atoll way

Types of errors
Phonetic errors
Phonetic errors
Errors stemming from imperfect sound-letter
correspondences

» Homophones: two words which sound the same
» e.g., red/read (past tense), cite/site/sight,
they’re/their/there

» Substitutions: replacing a letter (or sequence) with
similar-sounding one

ction
» e.g., seperate (for separate), bisket (for biscuit)

Types of errors

Knowledge-based errors

» Not knowing a word:

Introduction

» e.g., boocoo (for beaucoup),
» Not knowing a rule:

» e.g., consonant (non-)doubling: labeled vs. labelled,
hoped vs. hopped

» Knowing something is odd about the spelling, but
guessing the wrong thing

» e.g., siscors (for scissors)

Describing typical errors

Errors can be examined under a more mechanistic lens:

Types of operations

» insertion = a letter is added to a word

» deletion = a letter is deleted from a word

» substitution = a letter is put in place of another one
» transposition = two adjacent letters are switched

Note that the first two alter the length of the word, whereas
the second two maintain the same length.

Typical error properties

» Word length effects: most misspellings are within two
characters in length of original

» When searching for the correct spelling, we do not
usually need to look at words with greater length
differences

» First-position error effects: the first letter of a word is
rarely erroneous

» When searching for the correct spelling, the process is
sped up by being able to look only at words with the
same first letter

Isolated-word error correction methods

» Many different methods are used; we will briefly look at
four methods:

» Rule-based methods

» Similarity key techniques
» Probabilistic methods

> Minimum edit distance

» The methods play a role in one of the three basic steps:

1. Detection of an error (discussed above)
2. Generation of candidate corrections

> rule-based methods

> similarity key techniques
3. Ranking of candidate corrections

> probabilistic methods
> minimum edit distance (also usable for generation)

Rule-based methods

Introduction

One can generate correct spellings by writing rules:

» Common misspelling rewritten as correct word:
» e.g., hte — the
» Rules

» based on inflections: iy ey
> e.g., VCing — VCCing, where

V = letter representing vowel, ,
basically the regular expression [aeiou]

letter representing consonant,

basically [bcdfghjklmnpgrstvwxyz]

» based on other common spelling errors (such as

keyboard effects or common transpositions):

> e.g.,, CsC - CaC
> e.g., cie — cei

C=

Similarity key techniques (SOUNDEX)

» Problem: How can we find a list of possible corrections?

» Solution: Store words in different boxes in a way that
puts the similar words together.
» Example:
1. Start by storing words by their first letter (first letter
effect),
> e.g., punc starts with the code P.

2. Then assign numbers to each letter
> e.g., 0 for vowels, 1 for b, p, f, v (all bilabials), and so
forth, e.g., punc — P052
3. Then throw out all zeros and repeated letters, S
> e.g., P052 — P52.
4. Look for real words within the same box,
> e.g., punkis also in the P52 box.

http://en.wikipedia.org/wiki/Soundex

http://en.wikipedia.org/wiki/Soundex

Minimum edit distance

» In order to rank possible spelling corrections, it can be
useful to calculate the minimum edit distance =
minimum number of operations it would take to convert
one word into another.

» For example, we can take the following five steps to
convert junk to haiku:

1. junk — juk (deletion)

2. juk — huk (substitution)
3. huk — hku (transposition)
4. hku — hiku (insertion)

5. hiku — haiku (insertion)

» But is this the minimal number of steps needed?

Computing edit distances
Figuring out the upper bound

v

To be able to compute the edit distance of two words at
all, we need to ensure there is a finite number of steps.
This can be accomplished by

» requiring that letters cannot be changed back and forth
a potentially infinite number of times, i.e., we

» limit the number of changes to the size of the material
we are presented with, the two words.

v

v

Idea: Never deal with a character in either word more
than once.
Result:
» We could delete each character in the first word and
then insert each character of the second word.
» Thus, we will never have a distance greater than
length(word1) + length(word2)

v

Caveat emptor

Computing edit distances

Using a graph to map out the options

Introduction

» To calculate minimum edit distance, we set up a
directed, acyclic graph, a set of nodes (circles) and
arcs (arrows).

» Horizontal arcs correspond to deletions, vertical arcs
correspond to insertions, and diagonal arcs correspond
to substitutions (a letter can be “substituted” for itself).

Insert y Substitute y for x

Discussion here based on Roger Mitton’s book English Spelling and the Computer.

Computing edit distances

An example graph

» Say, the user types in fyre.

» We want to calculate how far away fry is (one of the
possible corrections). In other words, we want to
calculate the minimum edit distance (or minimum edit
cost) from fyre to fry.

» As the first step, we draw the following directed graph:

u]
o)
|
ul
it

Computing edit distances

Adding numbers to the example graph

» The graph is acyclic = for any given node, it is
impossible to return to that node by following the arcs.

» We can add identifiers to the states, which allows us to
define a topological order

» Topological order: not every pair of nodes has an
ordering

Computing edit distances

Adding costs to the arcs of the example graph

Introduction

» We need to add the costs involved to the arcs.

» In the simplest case, the cost of deletion, insertion, and
substitution is 1 each (and substitution with the same
character is free). e

» Instead of assuming the same cost for all operations, in
reality one will use different costs, e.g., for the first
character or based on the confusion probability.

Computing edit distances

How to compute the path with the least cost

Introduction

We want to find the path from the start (A) to the end (T) with
the least cost.

» The simple but dumb way of doing it:

» Follow every path from start (A) to finish (T) and see
how many changes we have to make.

» But this is very inefficient! There are many different
paths to check.

Computing edit distances

The smart way to compute the least cost

Introduction

» The smart way to compute the least cost uses dynamic
programming: process designed to make use of
results computed earlier

rrection

» We follow the topological ordering & calculate the least
cost for each node:

> We add the cost of an arc to the cost of reaching the
node this arc originates from.

> We take the minimum of the costs calculated for all arcs
pointing to a node and store it for that node.

» The key point is that we are storing partial results along
the way, instead of recalculating everything, every time
we compute a new path.

Probabilistic methods

When converting from one word to another, a lot of words
will be the same distance.

e.g., for the misspelling wil, all of the following are one edit
distance away:

> will
> wild
> wilt
> nil

Probabilities will help to tell them apart

The Noisy Channel Model

Probabilities can be modeled with the noisy channel model

Introduction

| Hypothesized Language: X|

| Noisy Channel: X — Y |

| Actual Language: Y |

Goal: Recover X fromY

» The noisy channel model has been very popular in
speech recognition, among other fields

(Thanks to Mike White for the slides on the Noisy Channel Model)

[m]

&

Noisy Channel Spelling Correction

| Correct Spelling: X|

Introduction

[Typos, Mistakes: X — Y]

Misspelling: Y

Goal: Recover correct spelling X from misspelling Y

» Noisy word: Y = observation (incorrect spelling)

» We want to find the word (X) which maximizes: P(X|Y),
i.e., the probability of X, given that Y has been seen

Example

| Correct Spelling: donald|

| Transposition: Id — d|

| Misspelling: donadl |

Goal: Recover correct spelling donald from misspelling
donadl (i.e., P(donald|donadl))

Probabilistic methods

Conditional probability

(Reminder)

p(xly) is the probability of x given y

» Let’s say that yogurt appears 20 times in a text of
10,000 words

» p(yogurt) = 20/10,000 = 0.002

» Now, let’s say frozen appears 50 times in the text, and
yogurt appears 10 times after it

» p(yogurt|frozen) = 10/50 = 0.20

Bayes Rule

With X as the correct word and Y as the misspelling ...
P(X|Y) is impossible to calculate directly, so we use:

» P(Y|X) = the probability of the observed misspelling
given the correct word

» P(X) = the probability of the (correct) word occurring
anywhere in the text

Bayes Rule allows us to calculate p(X|Y) in terms of p(Y|X):

(1) Bayes Rule: P(X|Y) = %

The Noisy Channel and Bayes Rule

We can directly relate Bayes Rule to the Noisy Channel:

Noisy Channel Prior

. —_—— ——
Posterior B Pr(Y|X) Pr(X)
Pr(X|Y) Pr(Y)

Normalization

Goal: for a given y, find x =

Noisy Channel Prior
—— —

arg maxy Pr(ylx) Pr(x)

The denominator is ignored because it's the same for all
possible corrections, i.e., the observed word (y) doesn’t
change

Finding the Correct Spelling

Goal: for a given misspelling y, find correct spelling x =

Error Model Language Model
—_—— —
argmaxy Pr(ylx) Pr(x)

1. List “all” possible candidate corrections, i.e., all words
with one insertion, deletion, substitution, or
transposition

2. Rank them by their probabilities

Example: calculate for donald
Pr(donadl|donald)Pr(donald)

and see if this value is higher than for any other possible
correction.

Caveat emptor

Obtaining probabilities

How do we get these probabilities?
We can count up the number of occurrences of X to get
P(X), but where do we get P(Y|X)?

» We can use confusion matrices: one matrix each for
insertion, deletion, substituion, and transposition

Obtaining probabilities

Confusion probabilities

» Itis impossible to fully investigate all possible error
causes and how they interact, but we can learn from
watching how often people make errors and where.

» One way is to build a confusion matrix = a table
indicating how often one letter is mistyped for another

correct
r S t
r na 12 22
typed s 14 n/a 15
t 11 37 n/a

(cf. Kernighan et al 1999)

u]
o)
|
ul
it

Obtaining probabilities

Using a spelling error-annotated corpus:

» These matrices are calculated by counting how often,
e.g., ab was typed instead of a in the case of insertion

To get P(Y|X), then, we find the probability of this kind of
typo in this context. For insertion, for example (X, is the pt"
character of X):
__ins[Xp-1,Yp]
(2) P(Y|X) - coun?[;(p,f]

Some resources ...

Want to try these some of these things for yourself?

» How to Write a Spelling Corrector by Peter Norvig:
http://norvig.com/spell-correct.html

» 21 lines of Python code (other programming languages
also available)

» Birkbeck spelling error corpus:

http://www.ota.ox.ac.uk/headers/0643.xml

http://norvig.com/spell-correct.html
http://www.ota.ox.ac.uk/headers/0643.xml

Spelling correction for web queries
A nice little side topic ...

Spelling correction for web queries is hard because it must
handle:

» Proper names, new terms, etc. (blog, shrek, nsync)
» Frequent and severe spelling errors

» Very short contexts

Error correction for
web queries

Algorithm

Main Idea (Cucerzan and Brill (EMNLP-04))

» lteratively transform the query into more likely queries
» Use query logs to determine likelihood

» Despite the fact that many of these are misspelled!
» Assumptions: the less wrong a misspelling is, the more
frequent it is; and correct > incorrect

Example:

anol scwartegger
arnold schwartnegger
arnold schwarznegger
arnold schwarzenegger

RN

Introduction

Error correction for
web queries

Algorithm (2)

Introduction

» Compute the set of all close alternatives for each word
in the query
» Look at word unigrams and bigrams from the logs; this
handles concatenation and splitting of words
» Use weighted edit distance to determine closeness
» Search sequence of alternatives for best alternative
string, using a noisy channel model

Error correction for
web queries

Constraint:

» No two adjacent in-vocabulary words can change
simultaneously

The formal algorithm
(just for fun)

Given a string sy, find a sequence sy, So, ..., Sy such that:
» Sp = Sp—1 (Stopping criterion)
» YieO...n-1,

» dist(sj, sit+1) < 6 (only a minimal change)

» P(sit1lsi) = max; P(t|s;) (the best change)

Error correction for
web queries

Examples

Context Sensitivity

» power crd — power cord
» video crd — video card
» platnuin rings — platinum rings
Known Words
» golf war — gulf war

» sap opera — soap opera

Error correction for
web queries

Examples (2)

Tokenization

» chat inspanich — chat in spanish

» ditroitigers — detroit tigers

» britenetspear inconcert — britney spears in concert
Constraints

» log wood — log wood (not dog food)

Error correction for
web queries

Context-dependent word correction

Introduction

Context-dependent word correction = correcting words
based on the surrounding context.

» This will handle errors which are real words, just not the
right one or not in the right form.

um edit distar
Probabilistic method:

» This is very similar to a grammar checker = a
mechanism which tells a user if their grammar is wrong.

Grammar correction—what does it correct?

» Syntactic errors = errors in how words are put together
in a sentence: the order or form of words is incorrect,
i.e., ungrammatical.

» Local syntactic errors: 1-2 words away

> e.g., The study was conducted mainly be John Black.
» A verb is where a preposition should be.

» Long-distance syntactic errors: (roughly) 3 or more
words away

» e.g., The kids who are most upset by the little totem is
going home early.
» Agreement error between subject kids and verb is

Introduction

More on grammar correction

» Semantic errors = errors where the sentence structure
sounds okay, but it doesn’t really mean anything.

» e.g., They are leaving in about fifteen minuets to go to
her house.

= minuets and minutes are both plural nouns, but only
one makes sense here

There are many different ways in which grammar correctors
work, two of which we’ll focus on:

» N-gram model
» Rule-based model

Introduction

N-gram grammar correctors

Remember that bigrams & trigrams model the probability of
sequences

Introduction

» Question n-grams address: Given the previous word (or
two words), what is the probability of the current word?
» Use of n-grams: compare different candidates:
> e.g., given these, we have a lower chance of seeing
report than of seeing reports
» Since a confusable word (reports) can be put in the

same context, resulting in a higher probability, we flag
report as a potential error

web queries

Grammar correction

But there’s a major problem: we may hardly ever see these
reports, so we won’t know its probability. L

» Some possible solutions:

» use bigrams/trigrams of parts of speech
» use massive amounts of data and only flag errors when
you have enough data to back it up

Rule-based grammar correctors

We can target specific error patterns. For example:

» To a certain extend, we have achieved our goal.

1. Match the pattern some or certain followed by extend,
which can be done using the regular expression
some|certain extend

> We'll discuss regular expressions with searching: for
now, think of them as short ways to write patterns or
templates

2. Change the occurrence of extend in the pattern to
extent.

See, e.g., http://www.languagetool.org/

Introduction

rrection

Grammar correction

http://www.languagetool.org/

Beyond regular expressions

» But what about correcting the following:
» A baseball teams were successful.

» We should see that A is incorrect, but a simple pattern
doesn’t work because we don’t know where the word
teams might show up.

» A wildly overpaid, horrendous baseball teams were
successful. (Five words later; change needed.)

» A player on both my teams was successful. (Five words
later; no change needed.)

» We need to look at how the sentence is constructed in
order to build a better rule.

Introduction

Grammar ¢

Syntax and Computing

Caveat emptor

Syntax

Introduction

» Syntax = the study of the way that sentences are
constructed from smaller units.

» There cannot be a “dictionary” for sentences since there
is an infinite number of possible sentences: eon

(3) The house is large.
(4) John believes that the house is large.

(5) Mary says that John believes that the house is
large.

Grammar correction

Syntax and Computing

There are two basic principles of sentence organization:

» Linear order
» Hierarchical structure (Constituency)

Linear order

» Linear order = the order of words in a sentence.
» A sentence can have different meanings, based on its
linear order:

Introduction

(6) John loves Mary.
(7) Mary loves John.

» Languages vary as to what extent this is true, but linear
order in general is used as a guiding principle for
organizing words into meaningful sentences.

» Simple linear order as such is not sufficient to
determine sentence organization, though.

» e.g., we can’t simply say “The verb is the second word
in the sentence.”

Grammar ¢

Syntax and Computing

Caveat emptor

(8) I eat at really fancy restaurants.

(9) Many executives eat at really fancy
restaurants.

Constituency

Introduction

» What are the “meaningful units” of a sentence like Most
of the ducks play extremely fun games?

» Most of the ducks

» of the ducks

» extremely fun

» extremely fun games

» play extremely fun games

» We refer to these meaningful groupings as
constituents of a sentence.

Hierarchical structure

» Constituents can appear within other constituents
» Constituents shown through brackets:

Introduction

[[Most [of [the ducks]]] [play [[extremely fun] games]]]
» Constituents displayed as a syntactic tree:

a

N
b e
A A
Most c play f
/\ /\
of d g
A
the

games
ducks extremely

fun
=] &

Categories

» the ducks, and

Introduction

» We would also like some way to say that
» extremely fun games

are the same type of grouping, or constituent, whereas
» of the ducks

seems to be something else.

» For this, we will talk about different categories
> Lexical
» Phrasal

Lexical categories

Introduction

Lexical categories are simply word classes, or what you
may have heard as parts of speech. The main ones are:
» verbs: eat, drink, sleep, ...
» nouns: gas, food, lodging, ...
» adjectives: quick, happy, brown, ...
» adverbs: quickly, happily, well, westward

Grammar correction

» prepositions: on, in, at, to, into, of, ...

Syntax and Computing

» determiners/articles: a, an, the, this, these, some,
much, ...

Determining lexical categories

Introduction
How do we determine which category a word belongs to?

» Distribution: Where can these kinds of words appear
in a sentence? rrection

» e.g., Nouns like mouse can appear after articles
(“determiners”) like some, while a verb like eat cannot.

» Morphology: What kinds of word prefixes/suffixes can
a word take?

Grammar correction

» e.g., Verbs like walk can take a ed ending to mark them
as past tense. A noun like mouse cannot.

Syntax and Computing

(We’ll discuss this more with Language Tutoring Systems)

Phrasal categories

Introduction

What about phrasal categories?

» What other phrases can we put in place of The joggers
in a sentence such as the following?

» The joggers ran through the park.
» Some options:

» Susan

» students

> you

» most dogs

» some children

» a huge, lovable bear

» my friends from Brazil

» the people that we interviewed

Grammar correction
Syntax and Computing

» Since all of these contain nouns, we consider these to
be noun phrases, abbreviated with NP.

Building a tree

Other phrases work similarly (S = sentence, VP = verb

phrase, PP = prepositional phrase, AdjP = adjective phrase):

S
NP

Introduction

VP
TN T
Pro PP \" NP
N T T
Most P NP play AdjP N
of D N Adv Adj
| | |
the

ducks extremely

fun
L

Phrase Structure Rules

Introduction

» We can give rules for building these phrases. That is,
we want a way to say that a determiner and a noun
make up a noun phrase, but a verb and an adverb do
not.

» Phrase structure rules are a way to build larger
constituents from smaller ones.

» e.g,S—>NPVP
T}%S says: Grammar correction

Syntax and Computing

> A sentence (S) constituent is composed of a noun
phrase (NP) constituent and a verb phrase (VP)
constituent. [hierarchy]

> The NP must precede the VP. [linear order]

Some other possible English rules

v

NP — Det N (the cat, a house, this computer)
NP — Det AdjP N (the happy cat, a really happy house)

» For phrase structure rules, as shorthand parentheses
are used to express that a category is optional.

» We thus can compactly express the two rules above as
one rule: NP — Det (AdjP) N

AdjP — (Adv) Adj (really happy)

VP — V (laugh, run, eat)

VP — V NP (love John, hit the wall, eat cake)
VP — V NP NP (give John the ball) S
PP — P NP (to the store, at John, in a New York minute)
NP — NP PP (the cat on the stairs)

Phrase Structure Rules and Trees

With every phrase structure rule, you can draw a tree for it.

Introduction

Lexicon:

Vt — saw
Det — the
Det — a /\

N — dragon

N — boy A A
Adj — young Det N Vi

_ N /\
Syntactic rules: the Agj N saw Det N
S —> NP VP | | ‘ |
VP — VI NP
NP — Det N
N — AdjN

young boy a dragon

Some Properties of Phrase Structure Rules

Introduction

» Potentially (structurally) ambiguous = have more than
one analysis

(10) We need more intelligent leaders.

(11) Paraphrases:
a. We need leaders who are more intelligent.
b. Intelligent leaders? We need more of them!

» Recursive = property allowing for a rule to be reapplied
(within its hierarchical structure).
e.g., NP - NP PP Caveat emptor
PP — P NP

» The property of recursion means that the set of
potential sentences in a language is infinite.

Parsing

Introduction

Using these phrase structure rules, we can get a computer
to parse a sentence = assign a structure to a sentence.

There are many, many parsing techniques out there.

» Top-down: build a tree by starting at the top (i.e. S —
NP VP) and working down the tree.

» Bottom-up: build a tree by starting with the words at e
the bottom and working up to the top. -

Trace of a top-down parse

Sy
/\
VP10

/\ /\

Dets N5 Vi1 NP3

| RN | N
thes Adjg Ng sawio Detys N+g
I | |

youngz boyg ais

dragonyz

Trace of a bottom-up parse

S17
/\
VPig
/\ /\
Det, N- Vtio NP45
| NG TN
the1 Adjs Ne sawg Detio N14
| | |
youngs boys

a1 dragonis

More finely articulated rules

Introduction
In practice, one actually works with rules like:

Or uses features & variables like:

» S = NPnum=x VPnum=x

It can get very complicated (& fun) very quickly:

» Stense=z — NPnum=x.per=y VPNUM=X PER=Y,TENSE=Z

Writing grammar correction rules

Introduction

So, with our rules, we can now write some correction rules,
which we will just sketch here.

» A baseball teams were successful.
» A followed by PLURAL NP: change A — The
> i.e., one looks for a tree like: NP — Detgy NP,

> We'll talk about this more with mal-rules in Language
Tutoring Systems

» John at the pizza.
» The structure of this sentence is NP PP, but that doesn’t
make up a whole sentence.
» We need a verb somewhere.

Grammar correction rules

Caveat emptor

Dangers of spelling and grammar correction

» The more we depend on spelling correctors, do we try
less to correct things on our own?

» But spell checkers are not 100%

» One (older) study found that students made more
errors (in proofreading) when using a spell checker!

| high SAT scores low SAT scores
use checker 16 errors 17 errors
no checker 5 errors 12.3 errors

Caveat emptor

(cf., http://www.wired.com/news/business/0,1367,58058,00.html)

http://www.wired.com/news/business/0,1367,58058,00.html

Candidate for a Pullet Surprise
(“The Spell-Checker Poem”)

Introduction

by Mark Eckman and Jerrold H. Zar
http://grammar.about.com/od/spelling/a/spellcheck.htm

I have a spelling checker,

It came with my PC.

It plane lee marks four my revue
Miss steaks aye can knot sea.

Eye ran this poem threw it,
Your sure reel glad two no.
Its vary polished in it's weigh.
My checker tolled me sew.

Caveat emptor

u]
o)
|
ul
it

http://grammar.about.com/od/spelling/a/spellcheck.htm

References

» The discussion is based on Markus Dickinson (2006).
Writer’s Aids. In Keith Brown (ed.): Encyclopedia of
Language and Linguistics. Second Edition.. Elsevier.

» A major inspiration for that article and our discussion is
Karen Kukich (1992): Techniques for Automatically
Correcting Words in Text. ACM Computing Surveys,
pages 377-439; as well as Roger Mitton (1996),
English Spelling and the Computer.

» For a discussion of the confusion matrix, cf. Mark D.
Kernighan, Kenneth W. Church and William A. Gale
(1990). A spelling Correction Program Based on a
Noisy Channel Model. In Proceedings of COLING-90.
pp. 205-210.

» An open-source style/grammar checker is described in
Daniel Naber (2003). A Rule-Based Style and Grammar
Checker. Diploma Thesis, Universitat Bielefeld.
https://www.languagetool.org

Introduction

Non-word error
detection

Error corre
web queries

Grammar

Caveat emptor

https://www.languagetool.org

	Introduction
	Non-word error detection
	Dictionaries
	N-gram analysis

	Isolated-word error correction
	Types of errors
	Rule-based methods
	Similarity key techniques
	Minimum edit distance
	Probabilistic methods

	Error correction for web queries
	Grammar correction
	Syntax and Computing
	Grammar correction rules

	Caveat emptor

